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Abstract

The present investigation is concerned with the propagation of plane waves at an imperfectly bonded interface

of two orthotropic generalized thermoelastic rotating half-spaces with different elastic and thermal properties. The

thermoelastic theory with one relaxation time developed by Lord and Shulman [A generalized dynamical theory of

thermoelasticity, J. Mech. Phys. Solids 15 (1967) 299–309] is used to study the problem. The reflection and transmission

coefficients of Quasi Longitudinal (QL-) wave, Quasi Thermal (T-mode) wave and Quasi Transverse (QT-) wave

have been derived. The effect of rotation has been studied on the velocities of different waves. Some special

cases of boundaries i.e. normal stiffness, transverse stiffness, thermal contact conductance, slip boundary and

welded contact boundary have been deduced from an imperfect one. Impact of different boundaries has been studied

graphically. It is observed that thermal properties, rotation and imperfect boundary have significant effect on the

propagation of waves.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Debonding and imperfect contact however are known to exist in composites, be in the domain of electrical,
thermal conduction or elasticity. For example, even grain boundaries in polycrystalline materials are not
perfect because of misfit of the atomic structures of two neighboring grains. In this case dislocation may form
on the interface and the atomic structure becomes different than in the bulk medium. This interface
imperfection may be felt only at very high frequencies. Another example of formation of a thin interface layer
occurs when two solids are bonded together either by a thin layer of another materials, for example, glue or by
some metallurgical process.

The popular model, which was adopted in the present study, is the linear spring like model, in which a thin
layer of interphase material is introduced near the interface. In the limit of vanishing layer thickness, the
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

cij isothermal elastic parameters
r density
C* specific heat at constant strain
T0 the initial uniform temperature
sij components of stress tensor
eij components of strain tensor

ai coefficients of linear thermal expansion
t0 relaxation time
k wave number
c phase velocity
o circular frequency
t time
T absolute temperature
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interfacial tractions become continuous, but the displacement at either side of the interface layer become
discontinuous, the jump in displacement being linearly proportional to the interfacial tractions and in
the field of thermal conduction, the finite difference in temperature between two dissimilar materials
is proportional to the heat flux at the interface. The boundary between the solids may behave as slip,
perfect or neither, depending on the properties of this layer, as has been demonstrated by Rokhlin and
Marom [11], and its state significantly affects thermoelastic wave reflection and interface mechanical
behavior.

Significant work has been done to describe the physical conditions on the interface by different
mechanical boundary conditions by different investigators. Notable among them are Jones and Whittier [2],
Nayfeh and Nassar [4], Rokhlin et al. [5], Rokhlin [8], Baik and Thomson [9], Angel and Achenbach
[10], Pilarski and Rose [12], Lovrentyev and Rokhlin [17], Laungvichcharoen et al. [22], Wang et al. [24], Ueda
et al. [28].

The heat equation for both coupled and uncoupled theories is of the diffusion type, predicting infinite
speeds of propagation for thermal waves, contrary to physical observations. Lord and Shulman [1] introduced
the theory of generalized thermoelasticity with one relaxation time by postulating a new law of heat
conduction to replace the classical Fourier’s law. This law contains the heat flux vector as well as its time
derivative. In addition it contains a new constant that acts as relaxation time. The heat equation of this theory
is of wave type, ensuring finite speeds of propagation for thermal and elastic waves. The remaining governing
equations for this theory, namely the equation of motion and the constitutive relation, remain the same as
those for the coupled and uncoupled theories. Dhaliwal and Sherief [7] extended this theory to an anisotropic
media. The second generalization was developed by Green and Lindsay [3] and is known as G–L theory. This
theory contains two constants that act as relaxation times and modifies all the equations of coupled theory not
the heat conduction equation only. The two theories both ensure finite speeds of propagation for thermal
wave.

Many authors contribute their efforts in studying the wave propagation in different types of medium, few
among them are Sharma [13], Sharma and Singh [14], Sinha and Elsibai [15,16], Abd-Alla and Al-Dawy [18],
Verma [19], Singh [20], Othman [21], Kumar and Sharma [23], Othman [25], Baksi and Bera [26], Sharma and
Thakur [27], Sharma and Othman [29].

This spring like model has been adopted in the present work between two generalized thermoelastic solids as
has been represented by the boundary conditions in the text. Kn, Kt, Kc used in the boundary conditions are
spring constant type material parameters. Kn !1; Kt !1; Kc !1 implies the continuity of displace-
ment components and temperature distribution and therefore the two solids are perfectly bonded together or
to say that the two solids are in welded contact (WC). At the other extreme Kn ! 0; Kt ! 0; Kc ! 0 implies
that the two solids are completely unbonded and x3 ¼ 0 is a free surface. So any finite positive value of these
so-called interface parameters defines an imperfect interface.

This study is motivated by the need for a better understanding of the role of interfaces on the propagation of
thermoelastic plane waves and how rotation plays its role when studied with imperfection. Therefore different
boundaries has been developed and impact of different boundaries on the reflection and refraction of
thermoelastic plane waves in orthotropic generalized thermoelastic rotating medium with one relaxation time
has been studied.



ARTICLE IN PRESS
R. Kumar, M. Singh / Journal of Sound and Vibration 324 (2009) 773–797 775
2. Basic equations

Consider a homogeneous orthotropic thermoelastic medium with one relaxation time. It has two plane of
symmetry and its elastic properties are defined by nine elastic moduli. The generalized Hooke’s law can be
expressed in the form

s11 ¼ c11e11 þ c12e22 þ c13e33 � b1T , (1)

s22 ¼ c12e11 þ c22e22 þ c23e33 � b2T , (2)

s33 ¼ c13e11 þ c23e22 þ c33e33 � b3T , (3)

s23 ¼ 2c44e23, (4)

s13 ¼ 2c55e13, (5)

s12 ¼ 2c66e12, (6)

where sij is the stress tensor and eij the strain tensor. Further

2eij ¼
qui

qxj

þ
quj

qxi

ði; j ¼ 1; 2; 3Þ, (7)

ui being the displacement vector.
The equations of motion and heat conduction equation in an orthotropic non-rotating thermoelastic

medium with one relaxation time without body forces and heat sources are

q
qxj

sij ¼ r
q2ui

qt2
ði; j ¼ 1; 2; 3Þ, (8)

K1
q2T
qx2

1

þ K2
q2T
qx2

2

þ K3
q2T

qx2
3

� T0
q
qt
þ t0

q2

qt2

� �
b1

qu1

qx1
þ b2

qu2

qx2
þ b3

qu3

qx3

� �
¼ rC�

qT

qt
þ t0

q2T
qt2

� �
, (9)

where

b1 ¼ c11a1 þ c12a2 þ c13a3; b2 ¼ c12a1 þ c22a2 þ c23a3; b3 ¼ c13a1 þ c23a2 þ c33a3.

3. Formulation of the problem

We consider two homogeneous orthotropic generalized thermoelastic solid half-spaces being in contact with
each other at a plane surface, which we designate as the plane x3 ¼ 0 of a rectangular cartesian co-ordinate
system OX 1X 2X 3. The medium is rotating with an angular velocity ~O ¼ O_

n, where
_
n is the unit vector

representing the direction of rotation. In the present problem, ~O ¼ ðO; 0; 0Þ.
The equation of motion in rotating frame of reference has two additional terms (i) centripetal acceleration

~O� ð~O�~uÞ due to time varying motion only (ii) the Coriolis acceleration 2~O� _~u. So Eq. (8) can be modified
in rotating medium as

q
qxj

sij ¼ r
q2ui

qt2
þ f~O� ð~O�~uÞgi þ ð2~O� _~uÞi

� �
ði; j ¼ 1; 2; 3Þ. (10)

We consider thermoelastic plane waves in x2x3-plane with wave front parallel to x1 axis and all the field
variables depend on x2, x3 and t.

For the plane wave propagating in the x2x3-plane

ui ¼ uiðx2; x3; tÞ;
q
qx1
� 0; T ¼ Tðx2; x3; tÞ. (11)



ARTICLE IN PRESS
R. Kumar, M. Singh / Journal of Sound and Vibration 324 (2009) 773–797776
From Eqs. (1)–(7) and (9)–(11), we obtain the equations of motion and heat conduction equation in a
rotating medium without body forces and heat sources in terms of the displacements in the form

c66
q2u1

qx2
2

þ c55
q2u1

qx2
3

¼ r
q2u1

qt2
, (12)

c22
q2u2

qx2
2

þ c44
q2u2

qx2
3

þ ðc23 þ c44Þ
q2u3

qx2qx3
¼ r

q2u2

qt2
� O2u2 � 2O _u3

� �
þ b2T ;2, (13)

c44
q2u3

qx2
2

þ c33
q2u3

qx2
3

þ ðc23 þ c44Þ
q2u2

qx2qx3
¼ r

q2u3

qt2
� O2u3 � 2O _u2

� �
þ b3T ;3, (14)

K2
q2T
qx2

2

þ K3
q2T

qx2
3

� T0
q
qt
þ t0

q2

qt2

� �
b2

qu2

qx2
þ b3

qu3

qx3

� �
¼ rC�

q
qt
þ t0

q2

qt2

� �
T , (15)

From Eqs. (12)–(14), it is obvious that the u1 motion representing SH waves is decoupled from the (u2,u3)
motion.

Let ~pð0; p2; p3Þ denote the unit propagation vector, c the phase velocity and k the wave number of the plane
waves propagating in x2x3-plane.

The plane wave solutions of Eqs. (13)–(15) are of the form

u2

u3

T

0
B@

1
CA ¼

A

B

C

0
B@

1
CA exp½ikðct� x2p2 � x3p3Þ�. (16)

Using Eq. (16) in Eqs. (13)–(15), we have

½U � c2ð1þ O2
1Þ�Aþ ½V � 2iO1c

2�B�
i

k

� �
b2p2C ¼ 0, (17)

½V þ 2iO1c2�Aþ ½Z � c2ð1þ O2
1Þ�B�

i

k

� �
b3p3C ¼ 0, (18)

t�T0c
2b2p2Aþ t�T0c

2b3p3B�
i

k

� �
ðW � c2C�t�ÞC ¼ 0, (19)

where

Uðp2; p3Þ ¼
c22

r
p2
2 þ

c44

r
p2
3; Zðp2; p3Þ ¼

c44

r
p2
2 þ

c33

r
p2
3,

V ðp2; p3Þ ¼
c23 þ c44

r

� �
p2p3; W ðp2; p3Þ ¼

K2

r
p2
2 þ

K3

r
p2
3,

b2 ¼
b2
r
; b3 ¼

b3
r
,

t� ¼
1

o
t0 � ið Þ; t0 ¼ t0o; O1 ¼

O
o
. (20)

Eqs. (17)–(19) in A, B, C can have a nontrivial solution only if the determinant of their coefficients vanishes,
i.e.

A0z
3
þ A1z

2
þ A2zþ A3 ¼ 0, (21)

where

A0 ¼ t�,
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A1 ¼
�½ðZ þUÞð1þ O2

1Þt
� þW

�
ð1þ O4

1 � 2O2
1Þ þ �Zð1þ O2

1Þðp
2
2 þ b

2
p2
3Þ�

ð1þ O4
1 � 2O2

1Þ
,

A2 ¼ �
½ð�ZU þ V

2
Þt� �W

�
ðZ þUÞð1þ O2

1Þ þ 2�ZV bp2p3 � �Zðb
2
p2
3U þ Zp2

2Þ�

ð1þ O4
1 � 2O2

1Þ
,

A3 ¼
�W

�
ðZU � V

2
Þ

ð1þ O4
1 � 2O2

1Þ
,

with

z ¼ c2; W
�
¼

W

C�
; � ¼

b22T0

rC�c22
; Z ¼

tc22

r
; b ¼

b3
b2

.

To solve Eq. (21) we assume x ¼ t�zþ ðA1=3Þ, yielding

x3 þ 3Hxþ G ¼ 0, (22)

where

H ¼
ð3t�A2 � A2

1Þ

9
; G ¼

ð27t�2A3 � 9t�A1A2 þ 2A3
1Þ

27

Roots of Eq. (22) are given by

x1 ¼ h1 þ h2; x2 ¼ h1gþ h2g2; x3 ¼ h1g
2 þ h2g,

with

h3
1 ¼
½�G þ ðG2 þ 4H3Þ

1=2
�

2
; h3

2 ¼
½�G � ðG2 þ 4H3Þ

1=2
�

2
; g ¼

ð�1� i
ffiffiffi
3
p
Þ

2
.

So, three roots of Eq. (21) are given by

z1 ¼
½x1 � ðA1=3Þ�

t�
; z2 ¼

½x2 � ðA1=3Þ�

t�
; z3 ¼

½x3 � ðA1=3Þ�

t�
.

The velocities of three waves (QL-wave, T-mode wave, QT-wave) are given by ðz1Þ
1=2; ðz2Þ

1=2; ðz3Þ
1=2 and

named as c1, c2, c3, respectively.

4. Reflection and transmission

Consider a homogeneous, orthotropic rotating generalized thermoelastic half-space occupying the region
x340 in imperfect bonded contact with another homogeneous orthotropic rotating generalized thermoelastic
half-space occupying the region x3o0. Incident QL- or QT- or T-mode wave at the interface will generate
reflected QL-, QT-, T-mode waves in the half-space x340 and transmitted QL-, QT-, T-mode waves in the
half-space x3o0 as shown in Fig. 1.

u2 ¼
X6
j¼1

Aje
iPj ; u3 ¼

X6
j¼1

Bje
iPj for x340,

u02 ¼
X9
j¼7

Aje
iPj ; u03 ¼

X9
j¼7

Bje
iPj for x3o0,

T ¼
X6
j¼1

Cje
iPj ; T 0 ¼

X9
j¼7

Cje
iPj . (23)
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Fig. 1. Geometry of the problem.
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where

Pj ¼ o½t� ðx2 sin ej � x3 cos ejÞ=cj�; for j ¼ 1; 2; 3; 7; 8; 9,

Pj ¼ o½t� ðx2 sin ej þ x3 cos ejÞ=cj�; for j ¼ 4; 5; 6, (24)

o being the angular frequency. We distinguish quantities corresponding to various waves by using the
subscript 1 for incident QL-waves, 2 for incident T-mode waves, 3 for incident QT-waves, 4 for reflected
QL-waves, 5 for reflected T-mode waves, 6 for reflected QT-waves, 7 for transmitted QL-waves, 8 for
transmitted T-mode waves and 9 for transmitted QT-waves. Thus, for example, for the incident QL-waves, c1
denotes the phase velocity, e1 the angle of incidence, P1 (x2, x3, t), the phase factor, A1 the amplitude of the u2
component of the displacement and B1 that of the u3 component of the displacement. We attach a prime to
denote the variables in the half-space x3o0, i.e. the displacement components are denoted by u02 and u03.

Since each of the incident QL-, incident T-mode, Incident QT-, reflected QL-, reflected T-mode, reflected
QT-, transmitted QL-, transmitted T-mode and transmitted QT-waves must satisfy the equations of motion
and heat conduction equation, we have from Eqs. (17) and (18):

Aj ¼ F jBj ; Cj ¼ F�j Bj ðj ¼ 1; . . . ; 9Þ

Fj ¼
½Zj � c2j ð1þ O2

1Þ�b2p2 � ðVj � 2iO1c2j Þb3p3

½Uj � c2j ð1þ O2
1Þ�b3p3 � ðVj þ 2iO1c2j Þb2p2

,

F�j ¼
½Zj � c2j ð1þ O2

1Þ�½Uj � c2j ð1þ O2
1Þ� � V 2

j þ 4O2
1c4j

� �
i

k
½fUj � c2j ð1þ O2

1Þgb3p3 � ðV j þ 2iO1c
2
j Þb2p2�

, (25)

The expressions for Uj ;Vj ;Zj are obtained from the expressions for U ;V ;Z given in Eq. (20)
on substituting the values for (p2,p3). For incident QL-wave p2 ¼ sin e1; p3 ¼ � cos e1; for incident T-mode
wave p2 ¼ sin e2; p3 ¼ � cos e2; for incident QT-wave p2 ¼ sin e3; p3 ¼ � cos e3; for reflected QL-wave
p2 ¼ sin e4; p3 ¼ cos e4; for reflected T-mode wave p2 ¼ sin e5; p3 ¼ cos e5; for reflected QT-wave
p2 ¼ sin e6; p3 ¼ cos e6; for transmitted QL-wave p2 ¼ sin e7; p3 ¼ � cos e7; for transmitted T-mode
wave p2 ¼ sin e8; p3 ¼ � cos e8 and for transmitted QT-wave p2 ¼ sin e9; p3 ¼ � cos e9. We thus have

U1 ¼
c22

r
sin2 e1 þ

c44

r
cos2 e1; V 1 ¼ �

c23 þ c44

r

� �
sin e1 cos e1; Z1 ¼

c44

r
sin2 e1 þ

c33

r
cos2 e1,
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U4 ¼
c22

r
sin2 e4 þ

c44

r
cos2 e4; V 4 ¼

c23 þ c44

r

� �
sin e4 cos e4; Z4 ¼

c44

r
sin2 e4 þ

c33

r
cos2 e4,

U7 ¼
c022
r0

sin2 e7 þ
c044
r0

cos2 e7; V7 ¼ �
c023 þ c044

r0

� �
sin e7 cos e7; Z7 ¼

c044
r0

sin2 e7 þ
c033
r0

cos2 e7.

ðU2;V 2;Z2Þ and ðU3;V 3;Z3Þ are obtained from ðU1;V1;Z1Þ on replacing e1 by e2 and e3,
ðU5;V 5;Z5Þ and ðU6;V 6;Z6Þ are obtained from ðU4;V4;Z4Þ on replacing e4 by e5 and e6,
ðU8;V 8;Z8Þ and ðU9;V 9;Z9Þ are obtained from ðU7;V7;Z7Þ on replacing e7 by e8 and e9.

5. Boundary conditions

We consider two bonded thermoelastic half-spaces as shown in Fig. 1. If the bonding is imperfect and the
size and spacing between the imperfections is much smaller than the wavelength then at the interface, the total
displacement field and temperature field given by Eq. (23) must satisfy the spring boundary conditions at
x3 ¼ 0 [17]

ðiÞ s033 ¼ Kn½u3 � u03�; ðiiÞ s
0
23 ¼ Kt½u2 � u02�,

ðiiiÞ K 03
qT 0

qx3
¼ Kc½T � T 0�; ðivÞ s033 ¼ s33,

ðvÞ s023 ¼ s23; ðviÞ K 03
qT 0

qx3
¼ K3

qT

qx3
. (26)

where Kn;Kt are the normal and transverse stiffness coefficients of a unit thin layer thickness with dimension
N/m3 and Kc is the thermal contact conductance (TCC) with dimension W/m2K.

The boundary conditions given by Eq. (26) must be satisfied for all values of x2, so we have

P1ðx2; 0; tÞ ¼ P2ðx2; 0; tÞ ¼ P3ðx2; 0; tÞ ¼ P4ðx2; 0; tÞ ¼ P5ðx2; 0; tÞ

¼ P6ðx2; 0; tÞ ¼ P7ðx2; 0; tÞ ¼ P8ðx2; 0; tÞ ¼ P9ðx2; 0; tÞ. (27)

Then from Eqs. (24) and (27), we have

sin e1

c1
¼

sin e2

c2
¼

sin e3

c3
¼

sin e4

c4
¼

sin e5

c5
¼

sin e6

c6
¼

sin e7

c7
¼

sin e8

c8
¼

sin e9

c9
¼

1

c
(28)

which corresponds to the Snell’s law in the present case.
Here e1 ¼ e4; e2 ¼ e5 and e3 ¼ e6, i.e. the angle of incidence is equal to the angle of reflection in the

orthotropic case, so the velocity of all reflected waves are equal to their corresponding incident wave,
i.e. c1 ¼ c4; c2 ¼ c5 and c3 ¼ c6.

Making use of Eqs. (25), (27) and (28), the boundary conditions (26) yield

a1B1 þ a2B2 þ a3B3 þ a4B4 þ a5B5 þ a6B6 þ a7B7 þ a8B8 þ a9B9 ¼ 0, (29)

b1B1 þ b2B2 þ b3B3 þ b4B4 þ b5B5 þ b6B6 þ b7B7 þ b8B8 þ b9B9 ¼ 0, (30)

d1B1 þ d2B2 þ d3B3 þ d4B4 þ d5B5 þ d6B6 þ d7B7 þ d8B8 þ d9B9 ¼ 0, (31)

e1B1 þ e2B2 þ e3B3 þ e4B4 þ e5B5 þ e6B6 þ e7B7 þ e8B8 þ e9B9 ¼ 0, (32)

f 1B1 þ f 2B2 þ f 3B3 þ f 4B4 þ f 5B5 þ f 6B6 þ f 7B7 þ f 8B8 þ f 9B9 ¼ 0, (33)

g1B1 þ g2B2 þ g3B3 þ g4B4 þ g5B5 þ g6B6 þ g7B7 þ g8B8 þ g9B9 ¼ 0, (34)

where

a‘ ¼ Kn ð‘ ¼ 1; . . . ; 6Þ,
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a‘ ¼ � Kn � c023
o sin e‘

c‘
F ‘ þ c033

o cos e‘

c‘
� b03F�‘

� �
ð‘ ¼ 7; . . . ; 9Þ,

b‘ ¼ KtF ‘ ð‘ ¼ 1; . . . ; 6Þ,

b‘ ¼ � KtF ‘ þ c044
o cos e‘

c‘
F ‘ �

o sin e‘

c‘

� �� �
ð‘ ¼ 7; . . . ; 9Þ,

d‘ ¼ KcF�‘ ð‘ ¼ 1; . . . ; 6Þ,

d‘ ¼ � KcF
�
‘ þ K 03F�‘

o cos e‘

c‘

� �
ð‘ ¼ 7; . . . ; 9Þ,

e‘ ¼ �c23
o sin e‘

c‘
F ‘ þ c33

o cos e‘

c‘
� b3F�‘ ð‘ ¼ 1; . . . ; 3Þ,

e‘ ¼ �c23
o sin e‘

c‘
F ‘ � c33

o cos e‘

c‘
� b3F�‘ ð‘ ¼ 4; . . . ; 6Þ,

e‘ ¼ c023
o sin e‘

c‘
F ‘ � c033

o cos e‘

c‘
þ b03F�‘ ð‘ ¼ 7; . . . ; 9Þ,

f ‘ ¼ c44
o cos e‘

c‘
F ‘ �

o sin e‘

c‘

� �
ð‘ ¼ 1; . . . ; 3Þ,

f ‘ ¼ �c44
o cos e‘

c‘
F ‘ þ

o sin e‘

c‘

� �
ð‘ ¼ 4; . . . ; 6Þ,

f ‘ ¼ �c044
o cos e‘

c‘
F ‘ �

o sin e‘

c‘

� �
ð‘ ¼ 7; . . . ; 9Þ,

g‘ ¼ K3F
�
‘

o cos e‘

c‘
ð‘ ¼ 1; . . . ; 3Þ; g‘ ¼ �K3F

�
‘

o cos e‘

c‘
ð‘ ¼ 4; . . . ; 6Þ,

g‘ ¼ �K 03F�‘
o cos e‘

c‘
ð‘ ¼ 7; . . . ; 9Þ.

Incident QL-wave: In the case of Incident QL-wave, A2 ¼ A3 ¼ B2 ¼ B3 ¼ C2 ¼ C3 ¼ 0 and A1, B1, C1 are
supposed to be known. Eqs. (29)–(34) will constitute a set of six simultaneous equations in six unknowns,
namely, B4;B5;B6;B7;B8;B9 and these can be solved by Cramer’s rule and we have

B‘

B1
¼

Dp
‘

D
ð‘ ¼ 4; 5; 6; 7; 8; 9Þ, (35)

where D and Dp
‘ are defined in Appendix A. From Eq. (25), we have

A‘

A1
¼

F ‘

F1

B‘

B1

� �
¼

F ‘

F1

Dp
‘

D

� �
ð‘ ¼ 4; 5; 6; 7; 8; 9Þ, (36)

C‘

C1
¼

F�‘
F�1

B‘

B1

� �
¼

F�‘
F�1

Dp
‘

D

� �
ð‘ ¼ 4; 5; 6; 7; 8; 9Þ, (37)

Incident T-mode wave: For Incident T-mode wave, A1 ¼ A3 ¼ B1 ¼ B3 ¼ C1 ¼ C3 ¼ 0 and A2;B2;C2 are
supposed to be known and Eqs. (29)–(34) will form a set of six simultaneous equations in six unknowns,
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namely, B4;B5;B6;B7;B8;B9 and solving by Cramer’s rule, we obtain

B‘

B2
¼

DT
‘

D
ð‘ ¼ 4; 5; 6; 7; 8; 9Þ, (38)

where D and DT
‘ are defined in Appendix A. From Eq. (25), we have

A‘

A2
¼

F ‘

F 2

B‘

B2

� �
¼

F ‘

F2

DT
‘

D

� �
ð‘ ¼ 4; 5; 6; 7; 8; 9Þ, (39)

C‘

C2
¼

F�‘
F�2

B‘

B2

� �
¼

F�‘
F�2

DT
‘

D

� �
ð‘ ¼ 4; 5; 6; 7; 8; 9Þ. (40)

Incident QT-wave: A1 ¼ A2 ¼ B1 ¼ B2 ¼ C1 ¼ C2 ¼ 0 and A3;B3;C3 are supposed to be known in the case
of Incident QT-wave. Solving Eqs. (28)–(33) by Cramer’s rule, we will constitute a set of six simultaneous
equations in six unknowns, i.e. B4;B5;B6;B7;B8;B9 obtaining amplitude ratios as

B‘

B3
¼

DS
‘

D
ð‘ ¼ 4; 5; 6; 7; 8; 9Þ, (41)

where D and DS
‘ are defined in Appendix A. From Eq. (25), we have

A‘

A3
¼

F ‘

F3

B‘

B3

� �
¼

F ‘

F3

DS
‘

D

� �
ð‘ ¼ 4; 5; 6; 7; 8; 9Þ, (42)

C‘

C3
¼

F�‘
F�3

B‘

B3

� �
¼

F�‘
F�3

DS
‘

D

� �
ð‘ ¼ 4; 5; 6; 7; 8; 9Þ. (43)

In Eqs. (35)–(37), A‘=A1 are the amplitude ratios for the horizontal component of the displacement, B‘=B1

are the amplitude ratios for the normal component of the displacement and C‘=C1 are the amplitude ratios for
the thermal parameter.

Similarly Eqs. (38)–(40) and (41)–(43) gives the amplitude ratios for incident T-mode and incident
QT-waves, respectively.

The reflection coefficient for incident QL-wave can be expressed in the form

RPP ¼
1þ F 2

4 þ F�24
1þ F 2

1 þ F�21

� �1=2
B4

B1
; RPT ¼

1þ F2
5 þ F�25

1þ F2
1 þ F�21

� �1=2
B5

B1
; RPS ¼

1þ F2
6 þ F�26

1þ F2
1 þ F�21

� �1=2
B6

B1
, (44)

The transmission coefficient for incident QL-wave can be expressed in the form

TPP ¼
1þ F2

7 þ F�27
1þ F2

1 þ F�21

� �1=2
B7

B1
; TPT ¼

1þ F 2
8 þ F�28

1þ F 2
1 þ F�21

� �1=2
B8

B1
; TPS ¼

1þ F 2
9 þ F�29

1þ F 2
1 þ F�21

� �1=2
B9

B1
. (45)

Similar expressions can be written for the reflection and transmission coefficients for incident T-mode and
incident QT-waves, by replacing the suffices 1 in the denominator by suffices 2 and 3, respectively. In the
reflection and transmission coefficient subscript 1 represents the incident wave, subscript 2 represents the
reflected and transmitted wave and in subscript P, T, S represent the QL-wave, T-mode wave, QT-wave,
respectively.

6. Particular cases

Normal stiffness: This implies continuity of stress components, shear components of displacement and
temperature distribution across the interface. If we put Kna0; Kt !1; Kc !1 in boundary conditions
given by Eq. (26), then imperfect boundary correspond to the case of normal stiffness and the corresponding
values of b‘ and d‘ as given by

b‘ ¼ F ‘ ð‘ ¼ 1; . . . ; 6Þ; b‘ ¼ �F ‘ ð‘ ¼ 7; . . . ; 9Þ,
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d‘ ¼ F�‘ ð‘ ¼ 1; . . . ; 6Þ; d‘ ¼ �F�‘ ð‘ ¼ 7; . . . ; 9Þ.

Transverse stiffness: Applying Kn !1; Kta0; Kc !1 in boundary conditions given by Eq. (26), then
we are left with transverse stiffness boundary, which implies continuity of stress components, normal
components of displacement and temperature distribution across the interface. Corresponding modified values
of a‘ and d‘ as given by

a‘ ¼ 1 ð‘ ¼ 1; . . . ; 6Þ; a‘ ¼ �1 ð‘ ¼ 7; . . . ; 9Þ,

d‘ ¼ F�‘ ð‘ ¼ 1; . . . ; 6Þ; d‘ ¼ �F�‘ ð‘ ¼ 7; . . . ; 9Þ.

Thermal contact conductance: This type of boundary is obtained if we put Kn !1; Kt !1; Kca0 in
boundary conditions given by Eq. (26) and this implies continuity of stress components and components of
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displacement across the interface. Corresponding changed values of a‘ and b‘ as given by

a‘ ¼ 1 ð‘ ¼ 1; . . . ; 6Þ; a‘ ¼ �1 ð‘ ¼ 7; . . . ; 9Þ,

b‘ ¼ F ‘ ð‘ ¼ 1; . . . ; 6Þ; b‘ ¼ �F ‘ ð‘ ¼ 7; . . . ; 9Þ.

Slip boundary: In the boundary conditions given by Eq. (26), if we assume Kn !1; Kt ¼ 0; Kc !1, then
the imperfect boundary modifies to a slip one, which implies continuity of normal components of stress,
normal components of displacement, temperature distribution and vanishing of transverse components of
stresses. The changed values of a‘, b‘, d‘ and f‘ are

a‘ ¼ 1 ð‘ ¼ 1; . . . ; 6Þ; a‘ ¼ �1 ð‘ ¼ 7; . . . ; 9Þ,
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b‘ ¼ 0 ð‘ ¼ 1; . . . ; 6Þ; b‘ ¼ c044
o cos e‘

c‘
F ‘ �

o sin e‘

c‘

� �� �
ð‘ ¼ 7; . . . ; 9Þ

d‘ ¼ F�‘ ð‘ ¼ 1; . . . ; 6Þ; d‘ ¼ �F�‘ ð‘ ¼ 7; . . . ; 9Þ; f ‘ ¼ 0 ð‘ ¼ 7; . . . ; 9Þ.

Welded contact: Welded contact or perfect bonding means continuity of stress components, components of
displacement and temperature distribution across the interface and this type of contact has been obtained
from boundary conditions given by Eq. (26) by taking Kn !1; Kt !1; Kc !1. The corresponding
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changed values of a‘, b‘ and d‘ are given by

a‘ ¼ 1 ð‘ ¼ 1; . . . ; 6Þ; a‘ ¼ �1 ð‘ ¼ 7; . . . ; 9Þ,

b‘ ¼ F ‘ ð‘ ¼ 1; . . . ; 6Þ; b‘ ¼ �F ‘ ð‘ ¼ 7; . . . ; 9Þ,

d‘ ¼ F�‘ ð‘ ¼ 1; . . . ; 6Þ; d‘ ¼ �F�‘ ð‘ ¼ 7; . . . ; 9Þ.
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7. Special cases

1. Transversely isotropic: For transversely isotropic generalized thermoelastic rotating medium with axis of
symmetry coinciding with x1-axis, then we have

c14 ¼ c24 ¼ c34 ¼ c56 ¼ 0; c22 ¼ c33; c13 ¼ c12; c55 ¼ c44; c23 ¼ c22 � 2c44,

K2 ¼ K3; a2 ¼ a3; b1 ¼ c11a1 þ 2c12a2; b2 ¼ b3 ¼ c12a1 þ 2ðc22 � c44Þa2.
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Using these values, the above results reduced to the case of generalized thermoelastic transversely isotropic
materials.

2. Cubic crystal: By applying following values for elastic and thermal parameters, our corresponding results
reduced to the case of generalized thermoelastic rotating cubic crystal materials.

c14 ¼ c24 ¼ c34 ¼ c56 ¼ 0; c22 ¼ c33 ¼ c11; c13 ¼ c23 ¼ c12; c55 ¼ c66 ¼ c44,

K1 ¼ K2 ¼ K3 ¼ K�; a1 ¼ a2 ¼ a3 ¼ at; b1 ¼ b2 ¼ b3 ¼ b ¼ ðc11 þ 2c12Þat.

3. Isotropic: For an isotropic generalized thermoelastic rotating medium, we have

c11 ¼ c22 ¼ c33 ¼ lþ 2m; c12 ¼ c13 ¼ c23 ¼ l; c44 ¼ c55 ¼ c66 ¼ m,
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c14 ¼ c24 ¼ c34 ¼ c56 ¼ 0; b ¼ b1 ¼ b2 ¼ b3 ¼ ð3lþ 2mÞat

K1 ¼ K2 ¼ K3 ¼ K�; a1 ¼ a2 ¼ a3 ¼ at.

In the foregoing results, if we use the above values of parameters, our problem reduced to the plane
wave propagation in generalized thermoelastic isotropic rotating materials. Our results after some
modification and simplifications tally with Abd-Alla and Al-Dawy [18] (for free surface in absence or
rotation).
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8. Numerical results and discussion

In order to illustrate theoretical results in the proceeding sections, we now present some numerical results.
The materials chosen for the purpose are Magnesium (M-medium) and Cobalt (M0-medium), the physical data
for which are given as [6]

Magnesium

c22 ¼ 5:974� 1010 Nm�2; c44 ¼ 3:278� 1010 Nm�2; c33 ¼ 6:17� 1010 Nm�2;

c23 ¼ 6:17� 1010 Nm�2; b2 ¼ 2:68� 106 Nm�2 deg�1; b3 ¼ 2:68� 106 Nm�2 deg�1;

K2 ¼ 1:7� 102Wm�1 deg�1; K3 ¼ 1:7� 102 Wm�1 deg�1; r ¼ 1:74� 103 Kgm�3;

T0 ¼ 298K; C� ¼ 1:04� 103 JKg�1 deg�1; t0 ¼ 0:005

Cobalt

c022 ¼ 3:071� 1011 Nm�2; c044 ¼ 1:510� 1011 Nm�2; c033 ¼ 3:581� 1011 Nm�2;

c023 ¼ 1:027� 1011 Nm�2; b02 ¼ 7:04� 106 Nm�2 deg�1; b03 ¼ 6:90� 106 Nm�2 deg�1;

K 02 ¼ 0:690� 102Wm�1 deg�1; K 03 ¼ 0:690� 102Wm�1 deg�1; r0 ¼ 8:836� 103 Kgm�3;

T 00 ¼ 298K; C�0 ¼ 4:27� 102 JKg�1 deg�1; t00 ¼ 0:001

Following non-dimensional parameters have been used for calculation

o
o�0
¼ 0:01;

Kn

kc44
¼ 20

Kt

kc44
¼ 10;

Kc

kK 03
¼ 5 and o�0 ¼

C�0c022
K 02

:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(*)

Rotation will play its role in the propagation of waves has been shown by comparing the phase velocities of
different waves in a rotating and non-rotating orthotropic generalized thermoelastic medium with one
relaxation time for different values of incidence angle varying from 01 to 901 at O1 ¼ 0:25 in Figs. 2–7.

We observe that the phase velocities in case of reflected QL-wave, reflected T-mode wave, transmitted
QL-wave and transmitted T-mode wave are greater when propagated through a medium with the concept
of rotation, whereas the rotation decrease the phase velocities of reflected QT-wave, Transmitted QT-wave.

So, we conclude that the quasi-transverse wave will propagate slowly in a rotating orthotropic generalized
thermoelastic medium with one relaxation time. As we know the transverse waves are considered to be more
destructive as compared to longitudinal and thermal waves. So, the concept of rotation in an orthotropic
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thermoelastic medium with one relaxation time, will produce more destruction as compare to non-rotating
type.

For the above values of the relevant parameters in (*), the system of Eqs. (34)–(42) is solved for absolute
amplitude ratios by using Gauss-elimination method for different values of dimensionless rotation O1 varying
from 0.45 to 0.75 at an angle of incidence equal to 451 and then using these absolute amplitude ratios, absolute
reflection and transmission coefficients are calculated from Eqs. (43)–(44). i.e. for incident QL-wave, the
absolute reflection and transmission coefficients can be written as

jRPPj ¼
1þ F2

4 þ F�24
1þ F2

1 þ F�21

� �1=2
B4

B1

				
				; jRPT j ¼

1þ F2
5 þ F�25

1þ F2
1 þ F�21

� �1=2
B5

B1

				
				; jRPSj ¼

1þ F 2
6 þ F�26

1þ F 2
1 þ F�21

� �1=2
B6

B1
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Fig. 17. Variations of amplitude ratios with dimensionless rotation O1 for incident T-mode wave: dimensionless rotation.
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and

jTPPj ¼
1þ F 2

7 þ F�27
1þ F 2

1 þ F�21

� �1=2
B7

B1

				
				; jTPT j ¼

1þ F2
8 þ F�28

1þ F2
1 þ F�21

� �1=2
B8

B1

				
				; jTPSj ¼

1þ F2
9 þ F�29

1þ F2
1 þ F�21

� �1=2
B9

B1

				
				.

Similar expressions can be written for the reflection and transmission coefficients for incident T-mode and
incident QT-waves. A computer program has been developed. The variations of these coefficients for
thermoelastic solid with Stiffness (ST), thermoelastic solid with Normal Stiffness (NS), thermoelastic solid
with Thermal Contact Conductance (TCC) and thermoelastic solid with Welded Contact (WC) have been
shown by dotted line with centre symbol (-� -� -� -� -� -� -), solid line ( ), solid line with centre
symbol , and dotted line (- - - - - - - - - - - - ), respectively, in Figs. 8–25.

The variations of reflection and transmission coefficients have been studied for the three different incident
waves as follows.

Incident QL-wave: Fig. 8 shows the variations of reflection coefficient jRPPj with dimensionless rotation O1.
The values of jRPPj for TCC, WC are larger than those for ST whereas in case of NS values are smaller than
ST. The values of jRPT j are always smaller for ST as compared with TCC, WC, NS and these are shown in
Fig. 9.

The variations of reflection coefficient jRPSj are depicted in Fig. 10. The values for ST are greater than those
for TCC, WC, NS in the range 0:45pO1p0:65 and when 0:65pO1p0:75 the values for ST decrease suddenly.
In case of transmission coefficients jTPPj the values for ST are smaller than those for NS, TCC, WC in the
range 0:45pO1p0:60, 0:45pO1p0:70, 0:45pO1p0:70, respectively otherwise greater and the variations of
these are shown in Fig. 11.

Fig. 12 shows that the values for transmission coefficient jTPT j which are greater than NS, WC for all values
of O1, whereas smaller than TCC in the range 0:63pO1p0:70 only, for ST boundary. The value of
transmission coefficient jTPSj in Fig. 13 shows that the values for ST boundary are more than TCC, WC, NS
only when O1 lies between 0:57pO1p0:75 and oscillatory behavior is due to the complex nature of the
problem.

Incident T-mode wave: Figs. 14 and 16 depict the variations of reflection coefficients jRTPj and jRTSj with
dimensionless rotation O1, respectively. The values for all the reflection coefficients are greater in case of ST as
compared with TCC, WC, NS for all values of O1.
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Fig. 21. Variations of amplitude ratios with dimensionless rotation O1 for incident QT-wave: dimensionless rotation.

0.45

0

0.9

1.8

2.7

3.6

R
ef

le
ct

io
n 

C
oe

ffi
ci

en
ts

 (Q
L-

w
av

e)

ST
NS
TCC
WC

0.5 0.55 0.6 0.65 0.7 0.75

Fig. 20. Variations of amplitude ratios with dimensionless rotation O1 for incident QT-wave: dimensionless rotation.
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The values of jRTT j, in case of ST boundary are greater than all other boundaries in the range when O1 lies
between 0:45pO1p0:60 and after this range some greater values are observed for other boundaries in
different ranges. These are shown in Fig. 15. For incident T-mode wave, the variations of transmission
coefficients jTTPj are shown in Fig. 17. It is found that the values of transmission coefficients for ST are always
smaller than all other different boundaries. The values for transmission coefficient jTTT j for the case of ST are
larger than those for other boundaries in the range 0:45pO1p0:55 and after that found to be smaller and
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Fig. 22. Variations of amplitude ratios with dimensionless rotation O1 for incident QT-wave: dimensionless rotation.
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Fig. 23. Variations of amplitude ratios with dimensionless rotation O1 for incident QT-wave: dimensionless rotation.
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these are depicted in Fig. 18. Fig. 19 shows the variations of transmission coefficients jTTSj. The oscillatory
behavior is observed for all the boundaries.

In Figs. 14 and 16 the values for ST are demagnified by dividing the original values by 10, to depict the
comparison between the boundaries.

Incident QT-wave: Reflection and transmission coefficients i.e. |RSP|, |RST|, |RSS|, |TSP|, |TST|, |TSS| for
dimensionless rotation O1 for incident QT wave are shown in Figs. 20–25, respectively. The values of |RSP| for
NS are much greater than those for all other boundaries, whereas the values for ST are smaller than all other
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Fig. 24. Variations of amplitude ratios with dimensionless rotation O1 for incident QT-wave: dimensionless rotation.
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Fig. 25. Variations of amplitude ratios with dimensionless rotation O1 for incident QT-wave: dimensionless rotation.
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in the range 0:55pO1p0:75 only. In case of ST, the values for |RST| are greater than those for NS; [TCC] and
WC when O1 lies between 0:45pO1p0:72; [0:45pO1p0:55, 0:57pO1p0:62] and 0:45pO1p0:55, respectively.

The values of reflection coefficient |RSS| for the case of ST are greater than all those for other boundaries
except for NS in the range 0:70pO1p0:75. For the transmission coefficients |TSP|, the values in case of ST
boundary are smaller than those for NS, TCC, WC for all the values of O1. Fig. 24 shows that the values of
transmission coefficient for transmitted T-mode wave i.e. |TST| in case of TCC are found much higher than all
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others whereas the values in case of ST are greater than those for NS and WC in the range 0:62pO1p0:72 and
0:62pO1p0:71, respectively.

It is concluded that the trend of variations of transmission coefficients |TSS| is oscillatory and values in case
of NS are found to be much higher. To depict the comparison, the values in Figs. 20, 23, 25 for NS are
demagnified by dividing the original values by 100, 10, 10 and in Fig. 22 the values for ST are demagnified by
dividing the original values by 10.
9. Conclusion

Generalized theory developed by Lord–Shulman [1] is used to study the problem. The analytical expressions
of the amplitude ratios for various reflected and transmitted waves are obtained for an Imperfect Boundary
and deduced for normal stiffness, transverse stiffness, thermal contact conductance, slip boundary and welded
contact. The reflection and transmission coefficients are compared graphically for different incident waves
with dimensionless rotation O1. Some particular cases of thermoelastic solids such as transversely isotropic,
cubic crystal and isotropic solids has been deduced from the present case of orthotropic thermoelastic rotating
solid. It is concluded that rotation effects the propagation of waves in different type of boundaries. Effect of
rotation on the phase velocities of waves is also observed in Figs. 2–7 and concluded that the concept of
rotation in an orthotropic thermoelastic medium with one relaxation time, will produce more destruction as
compare to non-rotating type. It is observed that in case of incident QT-wave the reflection and transmission
coefficients for NS boundary are found to be much higher than the others. A theoretical model has been
adopted in the present study but it is one of the realistic form of earth model and is useful for further
investigation for different seismologists.
Appendix A

D ¼

a4 a5 a6 a7 a8 a9

b4 b5 b6 b7 b8 b9

d4 d5 d6 d7 d8 d9

e4 e5 e6 e7 e8 e9

f 4 f 5 f 6 f 7 f 8 f 9

g4 g5 g6 g7 g8 g9

															

															

; Dp
4 ¼

�a1 a5 a6 a7 a8 a9

�b1 b5 b6 b7 b8 b9

�d1 d5 d6 d7 d8 d9

�e1 e5 e6 e7 e8 e9

�f 1 f 5 f 6 f 7 f 8 f 9

�g1 g5 g6 g7 g8 g9

															

															

,

Dp
5 ¼

a4 �a1 a6 a7 a8 a9

b4 �b1 b6 b7 b8 b9

d4 �d1 d6 d7 d8 d9

e4 �e1 e6 e7 e8 e9

f 4 �f 1 f 6 f 7 f 8 f 9

g4 �g1 g6 g7 g8 g9

															

															

; Dp
6 ¼

a4 a5 �a1 a7 a8 a9

b4 b5 �b1 b7 b8 b9

d4 d5 �d1 d7 d8 d9

e4 e5 �e1 e7 e8 e9

f 4 f 5 �f 1 f 7 f 8 f 9

g4 g5 �g1 g7 g8 g9

															

															

,

Dp
7 ¼

a4 a5 a6 �a1 a8 a9

b4 b5 b6 �b1 b8 b9

d4 d5 d6 �d1 d8 d9

e4 e5 e6 �e1 e8 e9

f 4 f 5 f 6 �f 1 f 8 f 9

g4 g5 g6 �g1 g8 g9

															

															

; Dp
8 ¼

a4 a5 a6 a7 �a1 a9

b4 b5 b6 b7 �b1 b9

d4 d5 d6 d7 �d1 d9

e4 e5 e6 e7 �e1 e9

f 4 f 5 f 6 f 7 �f 1 f 9

g4 g5 g6 g7 �g1 g9

															

															

,
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Dp
9 ¼

a4 a5 a6 a7 a8 �a1

b4 b5 b6 b7 b8 �b1

d4 d5 d6 d7 d8 �d1

e4 e5 e6 e7 e8 �e1

f 4 f 5 f 6 f 7 f 8 �f 1

g4 g5 g6 g7 g8 �g1

															

															

,

DT
4 and DS

4 are obtained from Dp
4 on replacing the elements ð�a1;�b1;�d1;�e1;�f 1;�g1Þ by

ð�a2;�b2;�d2;�e2;�f 2;�g2Þ and ð�a3;�b3;�d3;�e3;�f 3;�g3Þ. DT
‘ and DS

‘ ð‘ ¼ 5; 6; 7; 8; 9Þ are defined
similarly.
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